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Abstract. We study how the error of an ensemble regression estimator
can be decomposed into two components: one accounting for the indi-
vidual errors and the other accounting for the correlations within the
ensemble. This is the well known Ambiguity decomposition; we show an
alternative way to decompose the error, and show how both decomposi-
tions have been exploited in a learning scheme. Using a scaling param-
eter in the decomposition we can blend the gradient (and therefore the
learning process) smoothly between two extremes, from concentrating
on individual accuracies and ignoring diversity, up to a full non-linear
optimization of all parameters, treating the ensemble as a single learn-
ing unit. We demonstrate how this also applies to ensembles using a
soft combination of posterior probability estimates, so can be utilised for
classifier ensembles.

1 Introduction

It is well recognised that for best performance, an ensemble of estimators should
exhibit some kind of disagreement on certain datapoints. When estimators pro-
duce class labels and are combined by a majority vote, this is the often cited, but
little understood notion of “diversity”. When in a regression framework, using
estimators combined by a simple averaging operation, the notion of disagreement
between estimators is rigorously defined: with a single estimator, we have the
well known bias-variance trade-off [5], and with an ensemble of estimators, we
have a bias-variance-covariance trade-off [10]. The regression diversity issue can
now be understood quite simply: in a single estimator we have a two way trade-
off, and in a regression ensemble the optimal “diversity” is that which optimally
balances the bias-variance-covariance three way trade-off.

The understanding of regression ensembles is therefore quite mature. The
understanding of classification ensembles, using a majority vote combiner, is
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substantially less well developed; see [1] for a recent survey of the field. How-
ever, this lack of understanding can be partially side-stepped considering that
a classification problem can be reformulated as a regression problem by ap-
proximating the class posterior probabilities. In this case the theory is more
well developed—Fumera and Roli [4] represent the current state of the art and
Kuncheva [8] provides an excellent overview of the area.

Though the bias-variance-covariance decomposition fully quantifies the re-
gression diversity issue, a more well known result is the Ambiguity decomposition
[7]. This paper will summarise recent work explaining the link between these de-
compositions, and show an alternative new decomposition. We will see how these
decompositions can be exploited in a learning procedure.

The structure of this paper is as follows. in section 2 we show two ways in
which the ensemble error can be decomposed: one that has been seen in the
literature before, and one new to the literature. In section 3 we illustrate how
these can be used in a learning procedure. In section 4 we present a theoretical
analysis of the new decomposition and learning procedure. In section 5 we show
emprical results and finally conclude with observations on possible future work.

2 Decomposing the Ensemble Objective Function

2.1 The Ambiguity Decomposition

Let us assume that the ensemble combination function is a mean of the M

ensemble member outputs, that is f̄ = 1
M

∑

i fi. For convenience of notation
we have omitted dependence on any particular input x; it can be assumed fi is
the output of estimator i for a single arbitary input. The quadratic loss of this
estimator from its target d is:

eens = (f̄ − d)2 (1)

The Ambiguity Decomposition [7], states that the ensemble error is guaranteed
to be lower than the average individual error at an arbitrary datapoint. Formally,
this is:

eens = (f̄ − d)2 =
1

M

∑

i

(fi − d)2 −
1

M

∑

i

(fi − f̄)2 (2)

= e − a

This illustrates that the correlations between the members is a fundamental part
of the quadratic error. If we take the expected value of eq (1) with respect to
all possible training sets of fixed size, then we have the mean squared error. The
bias-variance-covariance decomposition [10] shows that this can be broken down
into three components:

E
{

(f̄ − d)2
}

= bias
2

+
1

M
var +

(

1 −
1

M

)

covar (3)
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The relationship between these two decompositions has been found [2] to be:

E
{ 1

M

∑

i

(fi − d)2
}

= bias
2

+ Ω (4)

E
{ 1

M

∑

i

(fi − f̄)2
}

= Ω −
1

M
var −

(

1 −
1

M

)

covar (5)

where the interaction between the expected average error and the expected Am-
biguity is the Ω term:

Ω =
1

M

∑

i

E
{

(fi − E
{

f̄
}

)2
}

= var +
1

M

∑

i

(E{fi} − E
{

f̄
}

)2 (6)

The Ambiguity decomposition is useful for a number of reasons, the primary
one being that since the Ambiguity is target-independent, it provides a way to
estimate generalisation error of an ensemble from unlabelled data [7].

2.2 An Alternative Decomposition

We note that the ensemble objective can also be decomposed as so:

eens = (f̄ − d)2

= (
1

M

∑

i

fi − d)2

=
1

M2

∑

i

[

(fi − d)
∑

j

(fj − d)
]

=
1

M2

∑

i

(fi − d)2 +
1

M2

∑

i

(fi − d)
∑

j 6=i

(fj − d) (7)

Regarding now eq (4), a simple deduction can be made:

E
{ 1

M2

∑

i

(fi − d)2
}

=
1

M

[

bias
2

+ Ω
]

(8)

and therefore:

E
{ 1

M2

∑

i

(fi − d)
∑

j 6=i

(fj − d)
}

=
(

1 −
1

M

)[

bias
2

+ Ω
]

− Ω +
1

M
var +

(

1 −
1

M

)

covar (9)
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It can be seen that through this new decomposition, part of the bias
2

and
Ω has “moved over” to the second term of the decomposition. This new decom-
poistion obviously does not share the useful target-independence property of the
Ambiguity decomposition—however, the decompositions do share another prop-
erty which makes them interesting to exploit in a learning scheme. This will be
the focus of the next section.

3 Using the Decompositions for Learning

3.1 A Useful Property of the Decompositions

If we were to train a single estimator, the error and associated gradient are:

ei = (fi − d)2
∂ei

∂fi

= 2(fi − d) (10)

In the previous section we described two ways to decompose the ensemble
error in (1) into two additive components. The decompositions share the property
that the first component is directly proportional to the error gradient of a single
estimator. By this we mean that if we calculate the gradient of the first term on
the right hand side of eq (2), we have:

∂ 1
M

∑

i(fi − d)2

∂fi

=
2

M
(fi − d) =

1

M

∂ei

∂fi

(11)

and the same applies to the new decomposition we have proposed, in eq (7), we
have:

∂ 1
M2

∑

i(fi − d)2

∂fi

=
2

M2
(fi − d) =

1

M2

∂ei

∂fi

(12)

Imagine now that we take one of the decompositions as our error function
to minimise, and place a scaling parameter in front of its second component. So
for the Ambiguity decomposition we would have:

eamb =
1

M

∑

i

(fi − d)2 − γ
1

M

∑

i

(fi − f̄)2 (13)

where the γ is our scaling parameter. If we set γ = 0, the search landscape will
be exactly equivalent (aside of a constant 1

M
factor) to that of a single estimator,

meaning all the minima will be in the same locations. If we set γ = 1 such that
the two components are balanced, this will be equivalent to training the ensemble
as a single unit, albeit a very complicated unit. This allows us to test a simple
hypothesis–“on a given dataset, which is better: a single complex machine, or an
ensemble of separately trained simpler machines?”. With γ, we blend between
the extremes—sometimes a simple ensemble will have best performance (γ = 0),
and sometimes a single, complex machine (γ = 1) will prevail. This could also
be interpreted as varying the fit of the model from few up to many degrees of
freedom.
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3.2 An Existing Training Scheme that Exploits the Property

Negative Correlation (NC) Learning [9] adds penalty terms of a particular form
to the error function of an individual estimator. In the original heuristic formu-
lation of NC, the penalty term existed in several different forms:

e
(1)
i =

1

2
(fi − d)2 + γ(fi − f̄)

∑

j 6=i

(fj − f̄) (14)

e
(2)
i =

1

2
(fi − d)2 + γ(fi − d)

∑

j 6=i

(fj − d) (15)

e
(3)
i =

1

2
(fi − d)2 + γ(fi − 0.5)

∑

j 6=i

(fj − 0.5) (16)

The training scheme is implemented as follows:

1. Let M be the final number of predictors required.
2. Take a training set z = {(x1, d1), ..., (xN , dN )}.
3. For each training pattern in z from n = 1 to N do :

(a) Calculate f̄ = 1
M

∑

i fi(xn)
(b) For each estimator from i = 1 to M ,

perform a single update for each weight w in estimator i according to
one of error functions (14), (15), or (16).

4. Repeat from step 3 for a desired number of epochs.

�
After training, for any new testing point the output of the ensemble is given

by the simple average combination. The γ parameter controls a trade-off between
the objective and penalty terms. With γ = 0 we would have an ensemble with
each estimator training with plain gradient descent exactly equivalent to training
a set of estimators independently of one another. If γ is increased, more and more
emphasis would be placed on the correlations by minimising the penalty.

The first form in (14) has been thoroughly investigated in a regresssion set-
ting [2]. This can be summarised by noting that (fi − f̄) = −

∑

j 6=i(fj − f̄), and
therefore:

e
(1)
i =

1

2
(fi − d)2 + γ(fi − f̄)

∑

j 6=i

(fj − f̄)

=
1

2
(fi − d)2 − γ(fi − f̄)2 (17)

The similarity to the Ambiguity decomposition can be seen immediately. This
link to the Ambiguity and Bias-Variance-Covariance decompositions allowed a
solid grounding, as well as a proven upper bound on the γ penalty coefficient
entirely independent of all parameters except M , the size of the ensemble [2].
In benchmarks against other ensemble techniques such as Mixtures of Experts,
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Adaboost.R1 and Bagging, it was found to be a competitive technique. The
remaining two forms were not as well understood. However, noting our new
decomposition, a slight rearrangement shows:

enew =
1

M2

∑

i

[

(fi − d)2 + (fi − d)
∑

j 6=i

(fj − d)
]

(18)

An immediate similarity to (15) can be seen, though the exact relationship is
not yet clear. This form of NC was found [9] to sometimes be more successful on
classification problems, than the original penalty. In the next section we proceed
to analyze the decomposition, in an attempt to identify why this penalty may
have outperformed the original.

4 Gradient Analysis of the New Decomposition

We have seen that the quadratic error of the simple average ensemble estimator
can be decomposed in two ways: the Ambiguity decomposition [7] and our new
decomposition in eq (7). Now that we know the ensemble error can be viewed in
a composite form (1) and two decomposed forms, we can calculate the gradients
either way. The composite form gives a simple result of:

∂eens

∂fi

= (f̄ − d) ·
1

M
(19)

Performing this instead starting from our new decomposed form shows more
interesting results. Before we begin the calculation, we first break it into two
components, where the first term concerns estimator i, and the second concerns
all the other estimators k 6= i :

eens =
1

M2





1

2
(fi − d)2 −

1

2
(fi − d)

∑

j 6=i

(fj − d)





+
1

M2

∑

k 6=i





1

2
(fk − d)2 −

1

2
(fk − d)

∑

j 6=k

(fj − d)





It should be of course noted that we have multiplied through by a constant
1
2 , as is usual in gradient descent training of MLPs, which were the estimator
used in this paper, but the analysis applies in general to any estimator. The
partial derivative of this result with respect to fi is:

∂eens

∂fi

=
1

M2



(fi − d) +
1

2

∑

j 6=i

(fj − d)





+
1

M2

∑

k 6=i

[

1

2
(fk − d)

]
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Or rearranged:

∂eens

∂fi

=
1

M2



(fi − d) +
1

2

∑

j 6=i

(fj − d) +
1

2

∑

k 6=i

(fk − d)



 (20)

We have omitted details of this calculation for space considerations, though it
is fairly involved and recommended that the reader attempt it to give assurance
of the result and implications described in the remainder of the section. If we
examine the final derivative, ignoring the constant scaling factor of 1

M2 , we see
the ensemble gradient has been broken into three components, which we will
now label and make use of. Gradient component “A” is:

A = (fi − d) (21)

Noting that the second and third components are identical (apart from the
indices j and k we have chosen), we have gradient components “B” and “C”:

B = C =
1

2

∑

j 6=i

(fj − d) (22)

Though they are identical, it can be seen from the breakdown we have given
that “B” is contributed by the ith estimator, whereas the “C” component is
contributed by the sum of the other estimators. Remembering the NC error,
using the second penalty term, eq (15), we have:

∂e
(2)
i

∂fi

= (fi − d) + γ
∑

j 6=i

(fj − d)

= A + γ(B + C)

Reintroducing the 1
M2 scaling factor, we note that when γ = 1 we have:

∂eens

∂fi

=
1

M2

∂e
(2)
i

∂fi

(23)

or rearranged:

∂e
(2)
i

∂fi

= M2 ·
∂eens

∂fi

(24)

The gradient of the ith estimator’s error function when using NC and set-
ting γ = 1.0 is proportional to, but M 2 times steeper than the ensemble error
gradient. This means that the minima will all be in the same locations in the
search space, but indicates that a much faster convergence down the landscape
should be observed, with the obvious consequence of possibly overshooting the
minimum. At γ = 0.5, it exactly models the individual estimator’s contribution
to the ensemble error. However, since the estimators’ outputs are combined,
the errors cannot be assumed to be independent of one another; with γ = 1.0,
it “simulates” the gradients of the remaining estimators, only possible because
B = C.
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5 Empirical Results

In the original experiments on NC [9], the penalty term in (15) was found to be
more successful on classification problems. With our new knowledge on where
the penalty is derived from, and noting that training was performed over a fixed
number of iterations, we hypothesize that in fact the steepness of the landscape
simply allowed faster convergence. We therefore engage in a short empirical test
to verify this, using a dataset that NC is known to perform well on, the Phoneme
data [6]. A full empirical benchmarking of the new penalty is outside the scope
of this paper.

We use an ensemble of 20 MLPs each with 6 hidden nodes. We perform a
five-fold cross validation, using 1 fold for training, 1 fold as validation data for
early stopping, and 3 folds as testing data. Training is stopped by monitoring
validation data for a rise over a 500 epoch moving window, at this point weights
are reset to the best point within the training period so far. Results are in figure 1
and 2, also indicating 95% confidence intervals. Results show statistically signif-
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Fig. 1. Error using original penalty (f̄)
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Fig. 2. Error using new penalty (d)

icant improvements in comparison to a simple ensemble, in both cases when γ is
set optimally. The correlation between the validation and testing curves indicate
it is possible to use validation error to select this γ for use on testing data. At
optimal γ there is no significant difference between the penalties. However, if we
regard figure 3, we can see the number of iterations required to converge to this
minimum error: here we see that the new penalty does indeed converge much
faster, in almost half the number of training iterations.
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6 Conclusions

We examined what happens when we decompose the objective function of the
ensemble into two components, one accounting for individual accuracy, and one
accounting for the effect of correlations between the estimators. It should be
noted the decompositons in this paper applies only to ensembles using the sim-
ple average combination method, and a quadratic loss function. We presented
the Ambiguity decomposition [7], and a new alternative decomposition of the
ensemble error. We showed how these decompositions have been exploited in a
learning scheme, and used analysis of the error gradients to explain why one may
outperform the other in certain situations.

In this work, we stated two assumptions which characterise the ensemble: a
simple average combination function, and a quadratic loss error function. What
happens when we use different assumptions? Are there decompositions when
using other combiners, like the median and mode rules? Or other loss functions
than quadratic? In classification, we are usually not interested in the quadratic
loss from the true posterior probabilities - but more so in the classification error
rate. This uses a zero-one loss function - are there analytic decompositions when
this is the case? Current evidence [3] shows that an additive decomposition does
not exist.

From this perspective, it seems obvious that any formulation of classification
diversity will be intrinsically tied to 1) the loss function, and 2) the combination
function, of the ensemble. Therefore any study citing the utility of “diversity”
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has a duty to present observations in this context, and not simply use “diversity”
as if it were a mysterious panacea.
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